

1996 AUTOMOTIVE TECHNOLOGY DEVELOPMENT - CUSTOMERS' COORDINATION MEETING

DEVELOPMENT OF A DIRECT-INJECTED NATURAL GAS ENGINE SYSTEM FOR HEAVY DUTY VEHICLES

Subcontractor

Caterpillar Inc.

Principle Investigator

Kerry DelVecchio Caterpillar Inc. Technical Center Mossville, Illinois 61552 (309) 578-4396

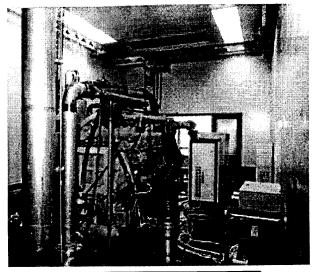
DOE Project Manager

Steve Goguen
U. S. Department of Energy
CE-332, MS6A-116/Forrestal
1000 Independence Avenue, SW
Washington, D. C. 20585
(202) 586-8044

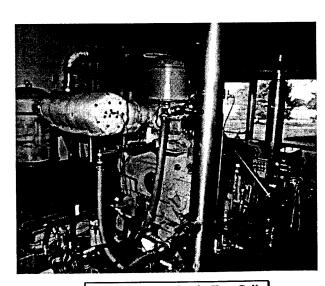
NREL Technical Monitor

Warren Salt NREL 1617 Cole Boulevard Golden, Colorado 80401 (303) 275-4422

Subcontract Number


ZCI-6-15107-01

Performance Period


2/96-2/97

NREL Subcontract Administrator

Kathy Rogue

3516 DING Engine in Test Cell

3501 DING Engine in Test Cell

Objective

Develop a commercially viable direct injection (DI) natural gas engine system on a four-stroke diesel cycle. The goal is for the engine to match the power, thermal efficiency, heat rejection, and durability of its diesel counterpart. The initial engine-out emissions goals are NOx < 2.5 g/hp-h and particulate matter < 0.05 g/hp-h.

Approach

In this phase of the program, Caterpillar will use a 3516 multi-cylinder engine (4.3 liters/cylinder, 16 cylinders) to perform durability testing, and a 3501 single cylinder engine to perform emission reduction testing. After a brief durability test, the 3516 engine will be disassembled and inspected to identify areas of needed improvement. Based on the results of the initial durability testing, design modifications shall be made and incorporated into the engine. The 3501 single cylinder engine shall be modified to meet an initial goal of 2.5 g/hp-h NOx emission level. Engine testing must show that the engine will meet this goal over an applicable heavy-duty vehicle engine cycle. Caterpillar will investigate the current level of 3000 psi fuel delivery technology both for CNG and LNG focusing on vehicle applications and economics. This study shall identify components that require further development for the fuel handling system to be commercially viable.

Accomplishments

The 3516 engine has accumulated a total of 225 hours and has been to 1500 rpm and 1475 kW, which is 95% of rated diesel power. Based on results to date, the key area of needed improvements will be in sealing the high pressure natural gas inside the gas injector, and the glow plug system. The 3501 single cylinder engine is operational and baseline emissions data are being taken. Hardware to reduce emissions has been procured and will be tested following the baseline testing.

Future Direction

Test work will continue on both engines. Following durability testing, the 3516 engine will be inspected and modifications for improvement will be identified. Techniques for achieving NOx < 2.5 g/hp-h will be identified on the 3501. In future program phases, Caterpillar will demonstrate the durability of the 3516 engine under simulated field test site conditions, determine the feasibility of < 1.0 g/hp-h NOx emissions using the 3501 engine, and demonstrate a durable 3000 psi fuel handling system.

Publications

None.